
1
American Institute of Aeronautics and Astronautics

AIAA 2000-4500

DATA MANAGEMENT IN THE ASSET SIMULATION
FRAMEWORK

Jeffrey Maddalon*, Stephen Derry*

{j.m.maddalon | s.d.derry}@larc.nasa.gov

NASA Langley Research Center
Hampton VA, 23681

Abstract
The Aircraft System Simulation Environment and Tool-
kit (ASSET) is a software framework for rapid develop-
ment and simulation of continuous systems. The central
concept of ASSET is a model—analogous to a block in a
system block diagram. One important way to simplify
the software development process for models is to use
encapsulation. Encapsulation is a software development
technique that disallows one model from accessing an-
other model’s internal state; models can only communi-
cate through their well-defined input/output interface.
Unfortunately when building a simulation, the engineer
will often require visibility to data values that are not part
of the normal interface. The data management system of
the ASSET framework attempts to solve this problem.
The data management system consists of a large central
repository in which all models may write data and a
common set of tools to access the data.*

Introduction
The Aircraft System Simulation Environment and Tool-
kit (ASSET) is a software framework for rapid develop-
ment and simulation of continuous systems. The frame-
work was designed primarily to simulate aircraft and
aircraft systems. ASSET is entirely written in the Java
computer language from Sun Microsystems [1]. The
Java computer language offers advantages over other
languages in the areas of portability, support for the ob-
ject-oriented design paradigm, and ease of learn ing.

* Computer Engineer, Systems Development Branch

Copyright 2000 by the American Institute of Aero-

nautics and Astronautics, Inc. No copyright is asserted in
the United States under Title 17, U.S. Code. The U.S.

Government has a royalty-free license to exercise all
rights under the copyright claimed herein for Govern-

mental purposes. All other rights are reserved by the
copyright owner.

The central concept of ASSET is a model [2]—analogous
to a block in a system block diagram. Models have well-
defined input and output vectors and may contain states
and/or other models. A system can be simulated in AS-
SET with one or more models. Other parts of ASSET
include a central data repository, software to present
simulation data in a useful format and a graphical user
interface to ease user interaction. In an environment with
rapidly changing requirements, models often need to
change frequently. To reduce the impact of this, one
important goal of ASSET is to minimize the work of the
model designer.

One method to achieve the goal of decreasing the work
of the model designer is to protect a model from other
models. The model designer must define the input and
output vectors for the model, and these vectors are the
only interface between the model and the world outside.
Model designers do not need to concern themselves
about how or when other models will read their data
since models within ASSET can only access the well-
defined interface of the model. The technique of isolating
models from each other is termed encapsulation [3].

Software frameworks that do not implement encapsula-
tion usually encounter difficulty maintaining scalability.
As the system grows and more models are added, it be-
comes much more likely that one component will supply
data to another component incorrectly. Models with a
well-defined interface (that is, models with well-defined
input and output vectors) should also be more reusable
than a model without encapsulation. If someone wants to
use an encapsulated model in another context, then all
they need to provide are the input signals. Since models
are guaranteed to be independent of each other, they
should be able to be moved to many environments (such
as batch or real-time). Finally, a well-defined interface
allows model writers the freedom to change the imple-
mentation of a model without forcing the users of this
model to change their software.

2
American Institute of Aeronautics and Astronautics

To effectively implement encapsulation, the model de-
signer should attempt to minimize the number of both
inputs and outputs. Building a model with too many in-
put signals brings all the problems of lack of encapsula-
tion within the model and unnecessarily increases com-
plexity on the model’s owner. A model with too many
outputs unnecessarily exposes the model’s implementa-
tion and reduces its reusability.

This encapsulation technique provides powerful leverage
for the ultimate scalability and reusability of the ASSET
framework; however it comes at a cost. Often when de-
veloping a system, the designer wants to know not only
the values of the input and output vectors but also the
value of intermediate computations and states for any
model in the system. These values may not be available
through the output vector. The designer could add “test
points” to the output vector; however, to maintain back-
ward compatibility, every future implementation of this
model must produce these signals—even if they are not
relevant to the current implementation. In addition every
time the designer wants another signal he or she must
change the code and add this signal and recompile. Fi-
nally, the designer must actually have the model’s source
code and even if it were available, the designer would
need a detailed understanding of the implementation to
know where to place the test point. Is there a better way?

In the above scenario, one may recognize two distinct
roles: the system designer who is concerned with simu-
lating the whole system and the model designer who is
concerned with one particular subsystem. Oftentimes,
the same person fills both of these roles but as the project
becomes larger, it is less likely that one person will be
able to fill them. As mentioned, system developers are
concerned about how the whole system operates. They
may be concerned with a particular subsystem, until they
are convinced that it is operating properly, then they will

turn their attention to another subsystem. Model devel-
opers are in the best position to determine what signals
are truly required to be the inputs and outputs of the
model. Model designers can also make the best decision
about what internal values may be of interest to future
users given the current implementation of the model. To
fully implement encapsulation, the model developer must
also ensure that other models do not rely on values that
are not part of the model’s normal interface.

The data management system of ASSET recognizes the
interplay between the two roles: the system developer
who needs signals from all over the system and the
model developer who needs models with the smallest
interface possible. ASSET’s data management system
provides a structure such that each designer can effec-
tively perform his or her job.

Overview
ASSET’s data management system separates the data
generators from the data consumers. Data generators are
usually models and data consumers are called DataCo l-
lectors. The basic design is that models write data into a
central repository, called the DataStore, which stores a
time-history of the data. Once the data is in this reposi-
tory, the DataCollectors can then pull data out. Figure 1
illustrates the relationship between Models, DataStore,
and DataCollectors. This data flow is strictly in one di-
rection. The data management system does not provide
any facility to retrieve data from either DataCollectors or
the DataStore and insert this data into a model.

The design of the data management system supports the
model developer and system developer roles, previously
described. Since model designers are in the best position
to determine what values are of interest in the model,
they decide what data the model can send to the Data-
Store. System designers decide if that model should send
any data to the DataStore. In other words, those who use

Model Model

Model

Model

Model

Tab Delimited
Recorder

Data Viewer

Strip Chart Recorder

DataStore

DataCollectors

Model

Figure 1 - ASSET Data Management System

3
American Institute of Aeronautics and Astronautics

the model (the system designers) decide if the data from
that model is of any interest.

The data management system also enjoys the benefits of
encapsulation without incurring its penalties. Since there
is no ability to feed data back into the models, model
designers are assured that signals cannot be incorrectly
injected into their models. Signals must come in to mo d-
els through their input vector. In addition, model design-
ers do not need to unnecessarily expose their implemen-
tation to allow system designers to examine the values
they find interesting. The model designers also do not
need to be concerned with who might want the data from
their models and where to send that data. They send the
data from their model to the central collection point,
where the system designer can view it. The data man-
agement system provides a small “back door” through
this strict encapsulation interface to allow system design-
ers to gather the information necessary to do their job.

In addition to supporting the needs of the two types of
ASSET designers, a few other interesting features come
out of its design. Since all data in an ASSET simulation
is stored in the same format in the DataStore, creating a
structure that allows data presentation in any format is
almost trivial. Through the object-oriented concept of
inheritance, all DataCollectors share the same software
that manages a group of channels and accesses the Da-
taStore. If a user requires a new data format they can
derive from the general DataCollector hierarchy. In this
way, they only need to be concerned with the specific
requirements of the data format, not the details of pulling
data out of the DataStore. The concept of a data format
is quite broad; in the small sense, it could mean a tab-
delimited text format or a binary format, but it could also
mean a graphical strip chart system or even a graphical
flight display.

Also, the creation of a central repository allows the Da-
taCollectors to be generic. The DataCollectors do not
have to be aware of the interface of every model whose
data they use. They only need to know what data they
want, not which model generated it. The separation be-
tween models and DataCollectors goes even further.
Models can run asynchronously from the DataCollectors.
Synchronizing the data is accomplished in the common
DataCollector software. This allows the data recording
to proceed when the main computation is idle or if an
ASSET simulation was running on a multiprocessor
computer, on another processor.

The three major components of ASSET’s data manage-
ment system are the models, which generate the data, the
DataStore, which serves as the central repository, and the

DataCollectors, which display the data in some useful
format. Each of these components is described in its own
section below.

Models and Their Data
One important concept is the balance between the model
designers who are interested in being insulated from the
context in which their model operates and the system
designers who are interested in getting all the data
needed to do their job.

Since the modeler cannot know what signals the system
designer will be interested in, the design of ASSET al-
lows the modeler to specify all signals that may be of
interest. These signals may include inputs, outputs, pa-
rameters, states (continuous and/or discrete) or interme-
diate computations. Once the modelers complete this
specification they no longer need to be concerned with
data management. The Model superclass [2] and the
DataStore perform all necessary operations to actually
get the data out of the model. Specifically, the Model
superclass determines when the signals in the model are
ready to be sampled. The DataStore maintains a time-
history of each signal.

System designers are also aided by the design of the data
management system for ASSET. These developers only
need to indicate that they are interested in values from
this model. If they are not interested in values from this
model, then no computational penalty is incurred. If they
are interested in values from this model, then they auto-
matically get access to all values that the modeler speci-
fied. System designers are not required to view these
signals if they do not want to, but they are available.
System designers also have the ability to set the sampling
rate. This is an integer representing a sub-division of the
simulation frame rate. If the sampling rate is 3, then the
data will be sampled every third frame. The DataStore
has no knowledge of how often models write data into
the DataStore. Since the DataStore has no concept of
this sampling rate, the sampling rate can be changed
while the simulation operates, including being set to zero
which turns sampling off.

A class indicates that it is able to write data into the Da-
taStore by implementing the Recordable interface†. The
Model superclass implements this interface; therefore all
ASSET models can record data in the DataStore. The
Recordable interface contains two methods. The setu-

† An interface is a special Java construct, similar to an

abstract class, which only contains method interfaces but
not their implementations [1].

4
American Institute of Aeronautics and Astronautics

pRecordable() method performs setup operations for
a channel such as specifying a name and providing sug-
gested units for the DataCollectors to use. The re-
cord() method actually copies the data into the Da-
taStore. One method could be used for both functions;
however, that would incur a greater performance cost.
With the current structure, only the record() method
needs to be called during the main execution loop of the
simulation. An example of the two methods of the Re-
cordable interface is given in figure 2.

The Model superclass tells the DataStore when the sig-
nals in the model are ready to be recorded. This opera-
tion involves calling the DataStore’s sample()
method. The Model gives the value of its simulation
time to DataStore with this method. The DataStore will
then invoke the model’s record() method. Through
this method, the DataStore will pass the Recordable an
array. The Recordable must then fill this array with the
appropriate values going to the DataStore. When the
record() method completes, the DataStore can alert
any collectors that new data has arrived.

ASSET models are the major implementers of the Re-
cordable interface; however, any class that implements
the Recordable interface can add data to the DataStore.
An example of a class that may be a Recordable but is
not a model would be the interface software for a cockpit
simulator. The system designer may want to know ex-
actly what is coming out of the hardware, before any
modeling software uses the data. Currently in ASSET,
Models are the only classes that implement the Record-
able interface; so for the purposes of this paper, the terms
model and Recordable are interchangeable.

DataStore
The DataStore is built as a series of channels, where each
channel is a structure that contains a time history of a
particular data value. At a particular instant in time,
models will generate the data value and notify the Da-
taStore. The DataStore will retain the time history of this
quantity, thus creating a channel. By maintaining a his-
tory of each data value, the DataStore effectively decou-
ples the data collection from the data output—allowing
models to execute at a different rate from the DataCo l-
lectors.

The DataStore serves as the central repository for data in
an ASSET simulation. Models write their data into the
DataStore, and DataCollectors read data out of the Da-
taStore and present this data to the user. This design has
several features. The models do not need to make their
interface available to every model in the simulation—
they only need to make their interface available to those
models that truly interact with the model. The data entry
portion of DataStore is performance sensitive, but the
DataCollectors are not; therefore, the data entry software
can be tuned for a real-time environment. This parti-
tioning allows the main simulation to operate independ-
ently of the data collection.

At its core, the DataStore is simply a three-dimensional
block of doubles, with the dimensions of models,
quantities, and time. (All quantities in ASSET are stored
as a double, a data type in Java indicating a double
precision floating point value.) Since the purpose of the
DataStore is to store channels (and a channel is the time
history of a quantity), the dimensions of quantity and
time fall out naturally. The dimension of models is

public void setupRecordable(int objectID) {
 datastore.addChannel(objectID, “speed”, “ft/s”);
 datastore.addChannel(objectID, “alt”, “ft”);
 datastore.addChannel(objectID, “alpha”, “deg”);
 datastore.addChannel(objectID, “beta”, “deg”);

 super.setupRecordable(objectID);
 }

public void record(int channelID, double[] values) {
 values[channelID++] = speed;
 values[channelID++] = altitude;
 values[channelID++] = alpha;
 values[channelID++] = beta;

 super.record(channelID, values);
 }

Figure 2 – Sample Recordable Methods.

5
American Institute of Aeronautics and Astronautics

needed because some information is the same for all
channels within a model. The most prominent member
of this group is the value of time. The DataStore stores a
separate time sequence for each model. This allows the
models to operate at different rates and even asynchro-
nously from each other. Furthermore, since a value of
time is stored for each dimension, the models can change
their update rate, at any time without affecting the Da-
taStore. The DataStore does not provide any correlation
of the signals from different models—this is the job of
the DataCollectors.

At construction-time the user specifies the size of the
DataStore. This size is the approximate number of Java
doubles that the DataStore allocates. Nominally, the
DataStore will divide this space equally among the chan-
nels. For a simulation of a given complexity, the size of
the buffer indicates how many past data values the Da-
taStore can hold; the greater the size, the longer the time
history can be stored for each channel. The DataStore
cannot derive a time (how many seconds of data can be
held) from this parameter, because then the DataStore
would know how often a model is going to write data
into the DataStore. The rate at which a model writes data
is entirely up to the model itself. The model can change
this rate (and even stop it) at any time. Once the buffer
within the DataStore is exhausted, the DataStore will
write over the oldest data. The DataCollectors must en-
sure that they acquire the data they need before the data
is overwritten. Since the DataStore operates in the main
simulation loop and allocating memory‡ during this time
would probably preclude the use of ASSET in a real-time
environment, the DataStore does not allocate any me m-
ory when running in the main simulation loop.

If one model’s iteration rate is twice as fast as other
models in the system, then this model will need twice as
much storage as other models to be able to store a time-
history of the same length. It is planned that the user will
be able to weight the data allocation within the DataStore
to account for this situation. Currently this feature is not
implemented.

When the DataStore has all the data for a particular
model at a particular time, it reports the arrival of this
new data to the DataCollectors. The DataStore only
alerts the DataCollectors; it does not send them any data.
It is the DataCollectors’ responsibility to determine if
they are interested in the data and to read the data from

‡ Allocating memory often involves a non-deterministic

execution time. Thus, its use during a real-time simula-
tion must be avoided.

the DataStore. The DataStore can alert the DataCollec-
tors in one of two ways: as an inline method or through a
Java event. Currently only the inline method is imple-
mented. The inline technique assumes a single thread of
control will flow from a model generating data, to the
DataStore recording this data, and then to the DataCol-
lectors displaying this data. The event technique pro-
vides a mechanism for the models and DataCollectors to
operate independently of each other. One thread (associ-
ated with a model) can write data into the DataStore and
not interfere with another thread (associated with a Da-
taCollector) reading data out of the DataStore.

The DataStore is designed to operate as independently as
possible from both models and DataCollectors. One of
these components can change without forcing changes on
the other components. As a result the DataStore deliber-
ately does not understand certain concepts. For instance,
the DataStore doesn't have an independent concept of
time. Specifically, it doesn't assume it knows what the
“next” time will be. This allows the model to change the
data update rate without consequence to the DataStore.
Since the DataStore cannot make any assumptions about
time, the DataStore does not perform any synchroniza-
tion of data between different models. The DataCollec-
tors are responsible for correlating the data coming out of
the DataStore.

DataCollectors
Once the data is in the DataStore, the data output prob-
lem becomes significantly easier; all data is available in a
central location and the data can be accessed through a
single interface. The real problem for the design of the
DataCollectors is how to develop a structure that facil i-
tates new data output capabilities with a minimal amount
of work.

The DataCollectors are the classes that take data out of
the DataStore and present this data in some format useful
to the user. DataCollector is an abstract class; it only
provides a structure to copy data out of the DataStore,
not a full implementation. Since all the data in an AS-
SET simulation is stored in a common format in the Da-
taStore, only one software module needs to be written to
take data out of the DataStore; this software is the Data-
Collector superclass. The DataCollector superclass does
not display any data itself. To display data, a class must
be built that inherits from DataCollector. ASSET pro-
vides several classes to display the data including space-

6
American Institute of Aeronautics and Astronautics

and tab- delimited recorders, MATLAB§ recorders, and
snapshots (classes that report the latest value for a chan-
nel). In the future, ASSET will provide advanced Data-
Collectors like graphical strip-chart plotters and graphical
flight displays. The hierarchy of DataCollectors was de-
signed to allow the user to quickly produce new software
to display data in different formats.

Currently ASSET provides two classes that derive from
DataCollector: CorrelateProcessor and LatestProcessor.
Whereas the DataCollector superclass only understands
how to take data out of the DataStore, these processor
classes determine which data is processed, but they do
not define how to display the data. Recognizing that
models can write data at different rates, the Corre-
lateProcessor can correlate information between different
models. The CorrelateProcessor maintains a time inde-
pendent of the simulation time. It will process the data
after it correlates the data from all channels for this time.
The CorrelateProcessor will perform a zero-order hold on
any data that has not been updated for the current time.
The LatestProcessor simply creates a data set of the latest
available data for all channels. Neither processor will
interpolate under any circumstance. A special Interpo-
lateProcessor is planned for such applications.

The differences between the CorrelateProcessor and the
LatestProcessor can be subtle. The major difference is
when a CorrelateProcessor produces a data set for time t,
the data within this set is valid for time t. The Latest-
Processor does not perform this correlation. If two mo d-
els operate asynchronously from each other, they could
have different simulation times. The LatestProcessor
does not take this difference into account. Another dif-
ference between these two processors is the Corre-

§ MATLAB® is a commercial software package for com-

putation, visualization, and programming produced by
The MathWorks, Incorporated. A MATLAB recorder is

an ASSET class that writes data in MATLAB’s native
format.

lateProcessor can operate without intervention from the
user. Once all data is available for a particular time, the
CorrelateProcessor will form the data set and display the
data. The user must explicitly invoke the LatestProces-
sor when the data is to be processed.

As discussed above, the DataStore can alert a DataCol-
lector in one of two ways: inline and event. All Data-
Collectors can be alerted by either method. The inline
method minimizes the amount of storage the DataStore
needs to allocate and the event method minimizes the
time spent in the main computational loop. With the
inline method, the DataCollectors always have the data
they need to display; so there is no risk that any data will
be lost. Since data cannot be lost, past values do not
need to be stored in the DataStore; therefore, the inline
method minimizes the amount of storage. Unfortunately,
this method executes data display operations during the
main execution loop. These operations may involve
writing to files or drawing graphics, which could have a
large and nondeterministic execution time. In a real-time
environment this is unacceptable. The event method
minimizes the time spent in the main computational loop,
but this method requires enough storage in the DataStore
to buffer the data to mitigate the possibility of losing
data. Using this mechanism, the when the DataStore re-
ceives new data, it simply sends a Java event to the Da-
taCollectors and immediately returns to the main simula-
tion loop. The DataCollectors must then access the Da-
taStore and read out any needed data before it is over-
written. This allows the simulation to operate in real
time, but the data recording, since it involves writing to
the disk, can occur when the real-time computation is
idle. In summary, the inline method works best for batch
simulations (simulations that are not sensitive to non-
deterministic execution times) and the event method
works best for real-time simulations.

The table below contains examples of different proces-
sors and alerting mechanisms and examples of their use.

SpaceDelimitedRec TabDelimitedRec

TextRecorder

Matlab5Recorder

BinaryRecorder

CorrelateProcessor

Snapshot

LatestProcessor

DataCollector

Figure 3 - DataCollector Inheritance Hierarchy

7
American Institute of Aeronautics and Astronautics

Processor Inline Alerting Event Alerting
Correlate-
Processor

• Batch recorder
• Batch plotter

• Real-time
recorder
• Graphical
strip chart re-
corder

Latest-
Processor

• Real-time
hardware output
• Batch snapshot

• Graphical
data viewer
• Real-time
snapshot

An inheritance hierarchy for members of the DataCo l-
lector family is shown in figure 3. The leaves of this tree
are classes that can be instantiated; the other members
are abstract classes. A recorder is a DataCollector that
writes time-history data out to a disk file. There are two
types of recorders: TextRecorder and BinaryRecorder.
As their names suggest, TextRecorder writes text files
and BinaryRecorder writes binary files. These classes
perform any necessary operations to create and manage
disk files, but they do not contain any information about
the format of the file. The two subclasses of TextRecor-
der are the space- and tab- delimited recorders. These
DataCollectors write information in a simple text format
with the columns of data separated by either spaces or
tabs. The Matlab5Recorder will write data in a format
compatible with MATLAB version 5.0 from The Math-
Works, Incorporated [4]. These three classes (TabDelim-
itedRecorder, SpaceDelimitedRecorder, and Mat-
lab5Recorder) essentially only contain one method to
write the file in the appropriate format. If the user
wanted to add a different format, they would simply in-
herit from either the TextRecorder or BinaryRecorder
classes and define this method. A Snapshot is a Data-
Collector that saves the latest values of all the channels to
a file. This is useful for capturing a view of the model at
a particular instant of time (that is, a “snapshot”).

The main configuration parameter for recorders is the
recording rate. Other configuration parameters include
the selection of channels, their associated units, and for-
matting information such as the number of decimal digits
to display. The recording rate indicates how often the
collector will record the data to a file. This feature al-
lows the user to distinguish between the recording rate
and the simulation rate. The simulation rate may in-
crease or decrease, but if the recording rate does not
change, the amount of data in the file will not change.

Just as the DataStore does not assume any rate that data
arrives, the DataCollectors also do not assume any arrival
rate for data. Generally, DataCollectors do not store any

data themselves; they rely on DataStore to retain past
values for each channel. The user must be careful about
relying on the DataStore to store past values. When the
DataStore fills all its storage for a channel, it will over-
write the oldest values. The CorrelateProcessor will de-
tect this condition (this condition has no meaning to a
LatestProcessor). To avoid this situation, the user can
either use the inline method to alert the collector—incur-
ring any resulting performance penalties—or ensure the
DataStore has enough memory.

The user may add any number of channels to a DataCol-
lector from the DataStore. There is no restriction on
what data any DataCollector may receive; if the data is in
the DataStore, all DataCollectors can read it. Several
DataCollectors can simultaneously read the same channel
without any difficulty. When the user adds a channel to
the collector, one important specification is the unit to be
used for displaying the quantities recorded on this chan-
nel. Since all data in the DataStore is specified in inter-
nal units [2], the quantity needs to be converted to the
desired unit prior to outputting the data. If the user of a
DataCollector does not specify the units for a channel;
then suggested units provided by the model writers will
be associated with the channel.

Status
Most of the software described in this paper for the AS-
SET’s data management system has been in service for
approximately nine months. The software to implement
the event-oriented method for alerting DataCollectors has
not been implemented. Using a representative simulation
model (a version of the F-16 aircraft model described in
[5]), the data management system (with the Mat-
lab5Recorder) was able to record 210 signals in 35 mi-
croseconds on a 550 MHz Pentium III machine. This
time just measures the performance impact of the data
management system within the main computational loop
of a simulation (i.e., the time to record the data into the
DataStore). This time does not include much of the
computational load of a DataCollector, including any
time to actually write data to disk.

The software has demonstrated that new data formats can
be added quickly. The authors were able to build the
SnapShot collector in approximately one hour. It is ex-
pected that less experienced developers would take
longer, but not excessively longer, to develop new col-
lectors.

In addition to completing the event alerting software,
future enhancements to this software will include testing
this in a real-time environment. Full testing of the real-

8
American Institute of Aeronautics and Astronautics

time performance of this system will require the event
alerting mechanism to be completely functional. Also
the software must be verified to work within a multi-
processing computer system. Achieving high perform-
ance while maintaining data integrity will be a challenge
in this type of environment. The software was designed
to allow multiple independent threads to write into the
DataStore simultaneously; however, this operation will
need to be verified.

Summary
ASSET’s data management system provides a solution to
a fundamental problem in simulation software develop-
ment. Software can be developed faster and with higher
quality if the modeler can be insulated from other soft-
ware in the system. However, this model encapsulation
also hinders legitimate use by others who require access
to all signals so they can gain an understanding of the
system as a whole. The data management system, em-
ploying a central repository, combines encapsulation
with one-way visibility to meet both requirements. As a
side benefit of providing a central repository for the data,
new data formats can be added with very little effort.

References
1 Arnold, Ken; Gosling, James. The Java Programming

Language, Second Edition. Addison Wesley Publis h-
ing Co mpany, Reading, MA, 1998.

2 Derry, Stephen; Maddalon, Jeffrey. Implementing Dy-
namic System Models in the ASSET Simulation
Framework . AIAA 2000-4393. Modeling and Simu-
lation Technology Conference, Denver, CO, August
2000.

3 Booch, Grady. Object-Oriented Analysis and Design
with Applications, Second Edition. Benjamin / Cu m-
mings Publishing, Redwood City, CA, 1994.

4 The MathWorks, Inc. MAT-File Format, Version 5.
The MathWorks, Inc. © 1999.
http://www.mathworks.com

5 Stevens, Brian L.; Lewis, Frank L. Aircraft Control
and Simulation. John Wiley and Sons, Inc., New
York, NY, 1992.

